

A Simple Theory of Complex Skill Acquisition

Frank J. Lee

fjl@rpi.edu

Dept. Cognitive Science Rensselaer Polytechnic Inst. Niels A. Taatgen

niels@ai.rug.nl

Artificial Intelligence University of Groningen

Outline

- Act I: The Data
 - A brief review of Lee & Anderson (2001)
- Act II: The Model
 - Review of past models
 - The current model
- Act III: The Conclusion
 - The model's strengths
 - The model's shortcomings

The Data

Act I

The Task

- (a) Hold Positions (in 3 levels)
- (b) Runways
- (c) Performance Feedback
- (d) Weather Information

- (e) Queue
- (f) Weather Change Message
- (g) Error Message
- (h) Rule Message

The Task Analysis

Task Level

Unit Task Level

Unit-Tasks	Power Functions	R^2	χ^2	S.E.
Land Unit-Task	$T = 3582 + 8091 \mathrm{N}^{-0.733}$	0.997	5.061	187
Move Unit-Task	$T = 2590 + 6144 \text{N}^{-0.733}$	0.991	13.040	147
Queue Unit-Task	$T = 768 + 6215 N^{-0.733}$	0.971	26.544	189

Functional Level

Unit-Tasks	Power Functions	R^2	χ^2	S.E.
Find Plane	T = 373 + 2609 N ^{-0.561}	0.988	9.178	79
Move to Plane	$T = 304 + 375 N^{-0.561}$	0.954	12.786	20
Select Plane	$T = 50 + 2720 N^{-0.561}$	0.983	20.105	69
Find Runway	$T = 61 + 2111 N^{-0.561}$	0.985	15.453	56
Move to Runway	$T = 216 + 349 N^{-0.561}$	0.978	16.919	11
Select Runway	$T = 175 + 1281 N^{-0.561}$	0.982	47.047	22
*Select Runway	$T = 50 + 1378 N^{-0.457}$	0.982	29.546	22

Where are people looking (attending)?

Conclusions Drawn From Data Analysis

- Reducibility of Complex Tasks: Complex tasks consist of simple keystroke level components that are being learned according to basic learning principles
- Attentional Learning Hypothesis: Large portion of the learning at the keystroke level reflects the learning even at a lower level, i.e. attention level, of people learning where not to look

The Model

Act II

Production Learning: A Brief History

- The Ugly Duckling: The production learning mechanism in the ACT-R theory has always been the most volatile.
 - Remember our dalliance with dependencies?
- Yet It Is Critical: To model learning in complex tasks, a good mechanism for production rule learning is <u>vital!</u>
- Past Is The Future: In an ironic twist, Taatgen proposed *Production Composition* (or *Proceduralization*, depending on when you ask him), a fresh take on Anderson's (1982) procedural learning theory (with a touch of Soar learning theory thrown in).

The Model: Early Years

- Lee & Anderson (2000)
 - 2000 ICCM Conference: Model of expert performance using ACT-R/PM 1.0 and the experiment-ATC task
- Lee (2000)
 - Ph.D. Thesis: Hinted at (and implemented on the side) a model of learning where to look (i.e. locations) using ACT-R/PM 1.0 and ACT-R 5.0 and the experiment-ATC task
- Anderson (2000)
 - 2000 ACT-R Workshop: Model of learning from instructions using ACT-R 4.0 and a pseudo-ATC task
- Taatgen (2001)
 - 2001 ICCM Conference: Model of individual differences in learning using ACT-R 4.0 and a pseudo-ATC task

The Goal of the New Model

Goal

 A complete model of learning from instruction to expertise in the KA-ATC Task.

Question

- Will ACT-R 5.0 suffice?
 - Will production composition suffice?

The Model: Elegance is Virtue

Examples of Instructions

```
(land2(land3isa instructionisa instructiontask landtask landaction scanaction remember-stringarg1 wind-directionarg1 loc1arg2 nonearg2 noneprev land1)prev land2)
```

Task Independent Procedures

O preation	D scri pion				
Sc a n	These an optieors movevis u hattention to a certain region or				
Scars ek	thes creen foculon abbiject in that region and noceive that				
Sc a rempty	obje ct. Sc a use kwill only fo cus n jebts that havet heen				
	recethy attended, a coach exapty will focus nempt y pace in stead of text (necessary to find empty slots in the bloble ves				
Rememb e-do c	Theremember over ations stor in formation from the current				
Rememb e-string	vis unal loctinon roobje of in the glo Ratememb of locstores the				
Rememb e-stat us	c urrent visual lo ctaion. Rememb e-astring appse sthec une naly				
	atte n d evolord a nstbre sit in the glo Raememb er-statu sp ars es				
	arun awy string an osto es tsi status (fre e rooc cuiepo) in the				
	g o la				
Press- e tær	O preation so spess tehe toer and F1 key, se sepectively				
Press-F1					
Moe-to-loc	O preation to movethecurs or to a speifice depition othe				
	screen by repeted ressing of the arrow elys				
C omp are-re start	Compare whether the two arguments of the action are equitalf				
	this is the cas e restart the repse nt g d, a desecont in e. Tila				
	opreationis use din combination it whis ca-use e kto find a non-				
	747 in Hoblevel 1				

Model's Goal Control Structure

Task Level

Unit Task Level

9 January 2001 Lee & Taatgen 20

Functional Level

Yes, model is slower, but this is probably due to the conservative nature of production composition.

The Conclusion

Act III

Pluses

- It works!
- Uses default ACT-R 5.0 parameters (no parameter optimizations performed)
- Uses the experiment-ATC task
- It's simple
 - Modest set of task instructions + simple set of tasindependent procedures = complex learning behavior
- Displays interesting strategy change (e.g. John & Lallement's (1997) opportunistic strategy)
- And have I mentioned that it works?

Minuses

- Still starts out with too much knowledge
 - e.g. goal control structures
- Lacks strategy variations
 - This may be due to starting out with too much knowledge
 - (Solution: include knowledge discovery phase)
- Too slow at the keystroke level
 - (Solution: optimize production compiler for RPM)

The End?